United States Patent

US009436696B2

(12) (10) Patent No.: US 9,436,696 B2
Dryfoos et al. 45) Date of Patent: Sep. 6, 2016
(54) DATA FRAGMENTATION TUNING AND 8,244,992 B2 8/2012 Spackman
CANDIDACY PERSISTENCE 8,990,477 B2* 3/2015 Parker GO6F %/10/%2
3k
(71) Applicant: International Business Machines 2004/0148476 AL® 712004 Altare . GO6F7?/10/?£
Corporation, Armonk, NY (US) 2007/0088912 Al* 4/2007 Mukhetjee GOG6F 3/061
711/112
(72) Inventors: Robert O. Dryfoos, Hopewell Junction, 2008/0177994 Al* 7/2008 Mayerccoonve. GOG6F 9/4418
. 713/2
NY (US); James V. Farmer,
Wanpi Falls. NY (US): Bradd A 2009/0254594 Al* 10/2009 Burchall GOG6F 17/30135
appmgers alls, (US): Bra . 2011/0099326 Al 4/2011 Jung et al.
Kadlecik, Wappingers Falls, NY (US) 2011/0225164 Al 9/2011 Narasayya et al.
2012/0284474 Al 11/2012 Lehr et al.
(73) Assignee: International Business Machines 2012/0303918 Al 11/2012 Reed et al.
Corporation, Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: SUbjeCt, to any (gsglaimeé > the Iiermefthis Amer et al., “A Heuristic Approach to Re-Allocate Data Fragments
%atserét lls Sletjenbe 430(1; 3 justed under 35 in DDBSs”, 2012 International Conference on Information Tech-
T (b) by ays. nology and e-Services, 2012 IEEE.
. Benkrid et al.,, “A Combined Selection of Fragmentation and
(21) Appl. No.: 14/043,868 Allocation Schemes in Parallel Data Warehouses”, 19th Interna-
a1 tional Conference on Database and Expert Systems Application, pp.
(22) Filed: Oct. 2,2013 370-374, 2008 IEEE, DOI 10.1109/DEXA.2008.63.
(65) Prior Publication Data * cited by examiner
US 2015/0095292 Al Apr. 2, 2015
Primary Examiner — Taelor Kim
o4
(51) Int. ClL () (74) Attorney, Agent, or Firm —Patricia B. Feighan;
GO6F 7/00 2006.01 Parashos Kalaitzis
GO6F 17/00 (2006.01)
GO6F 17/30 (2006.01) (57) ABSTRACT
(52) ICJPSC Cl. GOGF 1730135 (2013.01) A method for implementing defragmentation of a data area
5% Field fCl """) ﬁ """ o S h ’ is provided. The method may include receiving a data
(58) CII(: c of Classification Searc GOGF 17/30135 change event for the data area and determining, whether the
S 1 """ T ﬁ lf """"""" 1 """"" b hi data area has exceeded a defragment threshold based on a
ee application file for complete search history. defragment threshold value. The method may further
. include adding the data area to a candidacy list when the data
(56) References Cited area is determined to have exceeded the defragment thresh-
U.S. PATENT DOCUMENTS old based. on the defragment. threshold value. The method
may also include defragmenting the data area when the data
6,571,261 B1* 5/2003 Wang-Knop GOG6F 3/0601 area is determined to have exceeded the defragment thresh-
7.487,105 B2 2/2009 Jacobs ... G06Q 10/02 old based on the defragment threshold value and removing
7562003 B2 7/2009 Scoft et al 705/7.19 the data area from the candidacy list following the determi-
7921,103 B2 4/2011 Olston et al. nation.
8,051,115 B2 11/2011 Biller
8,190,811 B2 5/2012 Moon et al. 11 Claims, 4 Drawing Sheets
|Ill1_l

Computer 102

Communication Netwark

FEly

Data Area
jiF)

Threshold Value 122

Data Area Properties 120

Database 124

Data Change Event Manager
126

Defragmentation Manager
s

&

Server 11,

U.S. Patent Sep. 6, 2016 Sheet 1 of 4 US 9,436,696 B2

100

\

Processor

m‘—l

Data Storage
Device 106

oftware
Program
108

o
N

Computer 1

Communication Network
110

Defragmentation
Threshold Value 122

A 4

Data Area
112

Data Area Properties 120

Database 12

Data Change Event Manager Defragmentation Manager
126 116

/

Candidacy List 118

~

Server 11

FIG. 1

U.S. Patent Sep. 6, 2016 Sheet 2 of 4 US 9,436,696 B2

200"1

Data Change
Event.
202

Defragment
threshold reached?
204

~<
9

y NO

Add to candidacy
list.
206

END

FIG. 2

U.S. Patent Sep. 6, 2016 Sheet 3 of 4 US 9,436,696 B2

300
R

Process
Candidacy List
ltem.

302

Defragment
threshold reached?
304

~<
o
A4

Defragment ltem.
306

)

Remove from
candidacy list.
308

END

FIG. 3

US 9,436,696 B2

Sheet 4 of 4

Sep. 6, 2016

U.S. Patent

¥ 'Old

VAN NO
H0) ¥3LdVOY
UMY

m

S8R

i
i
m
M
f
M
|
t
(39YH0LS TIIONYL Jo T ™77 INHE WA
i
M
|
§
i
i

PRI e ————

T 8T8 (SIRTISAS SNHYHIAD-
.\\ - -
/. GagInae 03H3INI K0 RTTI0 T5VA05 1019001
98 \// ngved / M T —
[MW.MW% BT .M\\.\\\
oEs
=
S FES—"
(S)vy W
SHIAIMG —
TAIG ZE8 -’
! | (S)40583008d |
! m 928 OFR—"
0P8
SININOGNDT ToREIIN
. 00¥
q‘e008

US 9,436,696 B2

1
DATA FRAGMENTATION TUNING AND
CANDIDACY PERSISTENCE

FIELD OF THE INVENTION

The present invention relates generally to the field of
computing and more particularly to the defragmentation of
data areas.

BACKGROUND

Currently in computing, data fragmentation is a common
phenomenon when storage of a fixed size is used for data
fragments of varying sizes. As data fragments are added and
deleted from the storage areas, the storage space may
become fragmented with areas of unused space existing
between areas of in use space. As time progresses, these
storage areas typically may become more fragmented requir-
ing more storage than what would logically be needed. As
such, the difference between the logical storage requirement
and the physical storage usage may then determine the
amount of fragmentation that exists.

To rectify this problem, an expensive operation is typi-
cally needed to compact or defragment the storage (i.e.,
data) area, removing all the empty spaces. However, due to
the expense of performing the defragmentation operation, it
is not desirable to perform the defragmentation operation
often.

Furthermore, current methods of defragmentation merely
try to defragment any space that can be defragmented
without determining which storage areas need to be defrag-
mented. Additionally, these methods of defragmentation
typically involve a search for items to defragment. As such,
this may be an input/output (I/O) intense process depending
on the size and scope of the search for fragmented data areas.
Therefore, the performance benefits of defragmenting fre-
quently accessed data areas may be compromised.

SUMMARY

A processor-implemented method for implementing a first
manager and a second manager for defragmenting a data
area is provided. The method may include receiving, by the
first manager, a data change event for the data area and
determining, by the first manager, based on the occurrence
of the data change event, whether a data area has exceeded
the defragment threshold based on a defragment threshold
value. The method may further include adding the data area
to a candidacy list, by the first manager, when the data area
is determined to have exceeded the defragment threshold
based on the defragment threshold value and determining,
by the second manager, whether the data area has exceeded
the defragment threshold based on the defragment threshold
value. The method may also include defragmenting the data
area, by the second manager, when the the data area is
determined to have exceeded the defragment threshold
based on the defragment threshold value and removing the
data area, by the second manager, from the candidacy list
following the determination.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying

10

15

20

25

30

35

40

45

50

55

60

65

2

drawings. The various features of the drawings are not to
scale as the illustrations are for clarity in facilitating one
skilled in the art in understanding the invention in conjunc-
tion with the detailed description. In the drawings:

FIG. 1 illustrates the hardware that may be used in a
networked computer environment with an exemplary data
change event manager and a defragmentation manager
according to one embodiment;

FIG. 2 is an operational flowchart illustrating the steps
carried out by a data change event manager according to one
embodiment;

FIG. 3 is an operational flowchart illustrating the steps
carried out by a defragmentation manager according to one
embodiment; and

FIG. 4 is a block diagram of internal and external com-
ponents of computers and servers depicted in FIG. 1.

DETAILED DESCRIPTION

Detailed embodiments of the claimed structures and
methods are disclosed herein; however, it can be understood
that the disclosed embodiments are merely illustrative of the
claimed structures and methods that may be embodied in
various forms. This invention may, however, be embodied in
many different forms and should not be construed as limited
to the exemplary embodiments set forth herein. Rather, these
exemplary embodiments are provided so that this disclosure
will be thorough and complete and will fully convey the
scope of this invention to those skilled in the art. In the
description, details of well-known features and techniques
may be omitted to avoid unnecessarily obscuring the pre-
sented embodiments.

Embodiments of the present invention relate generally to
the field of computing and more particularly to the defrag-
mentation of data areas. The following described exemplary
embodiments provide a system, method and program prod-
uct for implementing a defragmentation threshold value
associated with a data area based on a defragmentation
assessment of the data area at the time the data area is
changed.

In the maintenance of file systems, defragmentation is a
process that reduces the amount of fragmentation. Defrag-
mentation physically organizes the contents of the mass
storage device used to store files into the smallest number of
contiguous regions (fragments). Defragmentation also
attempts to create larger regions of free space using com-
paction to impede the return of fragmentation.

As previously described, expensive methods exist to
compact or defragment the storage (i.e., data) area, remov-
ing all the empty spaces. However, due to the expense of
performing the defragmentation operation, it is not desirable
to perform the defragmentation operation often. Also, there
may be different degrees of fragmentation. For example,
having many small data fragments of varying size may cause
much less fragmentation problems then having many large
data fragments of varying sizes. As a result, some areas may
be frequently updated and trying to defragment those areas
may cause additional work with very little benefit.

Furthermore, the current methods of defragmentation try
to defragment any space that can be defragmented without
determining which storage areas need to be defragmented.
Additionally, current methods involving defragmentation
typically involve a search for items to defragment. As such,
this may be an input/output (I/O) intense process depending
on the size and scope of the search for fragmented data areas.
This may be particularly problematic for data areas that may
be frequently accessed during all hours in a global economy

US 9,436,696 B2

3

since the additional load on the system to perform this type
of search may result in this type of search to be performed
less often. As such, the performance benefits of defragment-
ing those frequently accessed data areas may be compro-
mised.

According to at least one embodiment of the present
invention, a defragmentation threshold value may be utilized
on a data area basis that may allow for some areas to be
designated as more highly fragmented than others and as a
result not cause additional overhead of defragmenting less
fragmented data areas. This threshold value may further be
adjusted and changed dynamically between each data area
defragmentation operation. As such, data fragmentation tun-
ing may be performed through modification of the defrag-
mentation threshold value on a data area basis. Data frag-
mentation tuning may be performed by collecting
information pertaining to how often a particular data area is
read as opposed to written to, added to, or deleted from.
Additionally, information may also be ascertained between
each defragmentation interval in order to determine how
often a particular data area is defragmented and an average
size of the data fragments associated with a data area. This
is particularly advantageous in reducing the amount of time
defragmentation process takes in addition to reducing the
unavailability of data areas due to defragmentation actually
taking place at a particular time.

In accordance with at least one embodiment of the present
invention, the location of data areas is examined at the time
of a change to determine if defragmentation may be ben-
eficial at that particular time of change. Therefore, no
additional search would be needed to be performed at a later
time, since a record (i.e., a candidacy list) of these data areas
concerning whether they require defragmentation may be
kept. As a result, defragmentation may be performed more
often without having to incur an expensive search for
fragmented data areas.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any

20

30

40

45

4

tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide

US 9,436,696 B2

5

processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the {functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

The following described exemplary embodiments provide
a system, method and program product for implementing
and recording a defragmentation threshold value associated
with a data area based on a defragmentation assessment of
the data area at the time the data area is changed. Addition-
ally, embodiments of the present invention may ensure
performance gain by re-assessing and defragmenting only
the data areas that have been recorded as possible candidates
for defragmentation based on the data area’s associated
defragmentation threshold value.

According to at least one embodiment of the present
invention, a defragmentation threshold value may be utilized
on a data area basis that may allow for some areas to be
designated as more highly fragmented than others and as a
result not cause additional overhead of defragmenting less
fragmented data areas. The defragmentation threshold value
may be defined by the user as a percentage representing
desired utilization. For example, in one implementation of
the present embodiment, the user may specify 30% as the
defragment threshold value. As such, the data area may
consist of up to 30% of unused space before being a
candidate for defragmentation. According to one implemen-
tation of the present invention, the amount of fragmentation
(i.e., a defragmentation threshold value or fragmentation
factor) may be added as a defragmentation threshold value
to a set of pre-existing properties that define each data area.
When defragmentation is performed, a defragmentation
manager may access these properties to determine if the
logical data size with the fragmentation factor is large
enough to benefit from being defragmented at this time.

Furthermore, in accordance with an embodiment of the
present invention, the location of data areas may be exam-
ined by a data change event manager at the time of a data
change to a data area to determine if that data area may be
a candidate for defragmentation. As such, whenever the
logical size of a data area is modified, a check may be
performed by the data change event manager to determine if
defragmentation would be beneficial by comparing the
physical size of the data area versus the logical size of the
data area since the difference between the logical storage
requirement and the physical storage usage may then deter-
mine the amount of fragmentation that exists (i.e., an aver-
age size of data fragments associated with a data area). The
logical size of a data area may not always match the physical

30

35

40

45

6

size. If the logical size is smaller then it may not be
beneficial to defragment the data area. This is just one of the
criteria that may be used to determine the defragmentation
threshold value for that area.

According to one implementation of the present inven-
tion, a candidacy list or record may be stored with a
reference to the data areas that may benefit from defrag-
mentation. As such, no search would have to be done prior
to the defragmentation process to determine which data
areas require defragmentation. Conversely, the list may be
accessed by a defragmentation manager at the time of
defragmentation and those areas on the list may be defrag-
mented without the necessity of an intensive I/O search
process.

Referring to FIG. 1, an exemplary networked computer
environment 100 in accordance with one embodiment is
depicted. The networked computer environment 100 may
include a computer 102 with a processor 104 and a data
storage device 106 that is enabled to run a software program
108. The networked computer environment 100 may also
include a server 114 that is enabled to run a defragmentation
manager 114 and a data change event manager 126. The
defragmentation manager 114 and the data change event
manager may interact with a database 124 and a communi-
cation network 110. The database 124 may have a data area
112 and may have data area properties 120.

The networked computer environment 100 may include a
plurality of computers 102 and servers 114 and a plurality of
data areas, only one of which is shown. The communication
network may include various types of communication net-
works, such as a wide area network (WAN), local area
network (LAN), a telecommunication network, a wireless
network, a public switched network and/or a satellite net-
work. It should be appreciated that FIG. 1 provides only an
illustration of one implementation and does not imply any
limitations with regard to the environments in which differ-
ent embodiments may be implemented. Many modifications
to the depicted environments may be made based on design
and implementation requirements.

The client computer 102 may communicate with database
124 running on server computer 114 via the communications
network 110. The communications network 110 may include
connections, such as wire, wireless communication links, or
fiber optic cables. As will be discussed with reference to
FIG. 4, server computer 114 may include internal compo-
nents 800a and external components 900q, respectively, and
client computer 102 may include internal components 8005
and external components 9005, respectively. Client com-
puter 102 may be, for example, a mobile device, a telephone,
a personal digital assistant, a netbook, a laptop computer, a
tablet computer, a desktop computer, or any type of com-
puting devices capable of running a program, accessing a
network, and accessing a database.

As previously described, the client computer 102 may
access data area 112 of database 124, running on server
computer 114 via the communications network 110. For
example, a user using an application program 108 running
on a client computer 102 may connect via a communication
network 110 to data area 112 of database 124 which may be
running on server 114. Additionally, the data change event
manager 126 may record a defragmentation threshold value
122 (i.e., threshold value) that may be stored with the data
area properties 120 of data area 112. The defragmentation
threshold value 122 may be implemented on data areas 112
allowing for some data areas 112 to be designated as more
highly fragmented than other data areas 112 and as a result
not cause additional overhead of defragmenting less frag-

US 9,436,696 B2

7

mented data areas 112. The defragmentation threshold value
122 may further be adjusted and changed dynamically
between each data area 112 defragmentation operation. The
defragmentation threshold value 122 may be ascertained by
the defragmentation manager 116. The data change event
manager 126 may collect information pertaining to how
often a particular data area 112 is changed (i.e., read as
opposed to written to, added to, or deleted from). Addition-
ally, information may also be ascertained by the data change
event manager 126 (FIG. 1) between each defragmentation
interval in order to determine how often a particular data
area 112 is defragmented.

According to one implementation of the present embodi-
ment, the location of data areas 112 may be examined by the
data change event manager 126 at the time of a data area 112
change to determine if defragmentation would be beneficial
at that particular time of change. As such, no additional
search may be needed to be performed at a later time to
determine if a data area 112 is a good candidate for defrag-
mentation. Additionally, a candidacy list 118 may be stored
by a data change event manager 126 on server 114. The
candidacy list 118 may include a list of all the data areas 112
that may benefit from defragmentation. The data change
event manager process is explained in more detail below
with respect to FIG. 2. The defragmentation manager 116
process is explained in more detail below with respect to
FIG. 3.

Referring now to FIG. 2, an operational flowchart illus-
trating the steps carried out by a data change event manager
according to one embodiment is depicted. As previously
described, a data change event manager 126 (FIG. 1) may
examine the location of data areas 112 (FIG. 1) at the time
of a data change, for example, a data add, write or delete (as
opposed to a data read or access) to a data area 112 (FIG. 1)
to determine if that data area 112 (FIG. 1) may be a
candidate for defragmentation. As such, whenever the logi-
cal size of a data area 112 (FIG. 1) is modified, a check may
be performed by the data change event manager 126 (FIG.
1) to determine if defragmentation would be beneficial by
comparing the physical size of the data area versus the
logical size of the data area 112 (FIG. 1). According to one
implementation of the present invention, a candidacy list
118 (FIG. 1) may be stored with a reference to the data areas
112 (FIG. 1) that may benefit from defragmentation. As
such, no search would have to be done prior to the defrag-
mentation process to determine which data areas require
defragmentation. Conversely, the list may be accessed by a
defragmentation manager (described later with respect to
FIG. 3) at the time of defragmentation and those areas on the
list may be defragmented without the necessity of an inten-
sive /O search process.

At 202, a data change event occurs. For example, the data
area 112 (FIG. 1) is written to, added to or deleted from as
opposed to read or accessed. Then at 204, the defragmen-
tation threshold is checked. The defragmentation threshold
value 122 (FIG. 1) for that specific data area 112 (FIG. 1) is
used to determine the defragment threshold. The defragment
threshold value may be used to compute the maximum
amount of resource that would be used (i.e., the defragment
threshold). For example purposes only, the following may be
defined:

B=logical size of the data area
N=number of physical blocks in use
P=defragment threshold value
M=defragment threshold

10

15

20

25

30

35

40

45

50

55

60

65

8

At data change time (i.e., data change event), M may be
calculated as the following:

M=B/((1-P)*physical block size)

Once M, is computed, then M may be compared to N to
determine if the current utilization is greater than or less than
the maximum fragmentation utilization as provided by the
defragment threshold. Since M must be a whole number, the
ceiling(M) may be used which would convert any fraction of
M to the smallest integer not less than M. Therefore, for a
data area 112 (FIG. 1) to be a candidate for defragmentation,
the following must be true:

Ceiling(M)<N

If the number of physical blocks in use is greater than the
number that would be in use with the maximum amount of
allowable fragmentation, then the data area 112 (FIG. 1)
maybe a candidate for defragmentation.

If at 204, (based on the analysis previously described) it
is determined that the data area is a candidate for defrag-
mentation, then the data area is added to a candidacy list 118
(FIG. 1) at 206. The candidacy list 118 (FIG. 1) may be
examined at a later time rather than performing an exhaus-
tive search to determine which data areas 112 (FIG. 1) are
potential candidates for defragmentation. As previously
explained, the candidacy list 118 (FIG. 1) may include a list
of all the data areas 112 that may benefit from defragmen-
tation at a later time (e.g. a scheduled time). This may be
beneficial since the data areas 112 (FIG. 1) are not being
automatically defragmented at the time of change, but rather
the data areas 112 (FIG. 1) may be evaluated at the time of
a change to be defragmented at a later time. For example, it
may have less impact on the system to schedule a defrag-
mentation time that is not during peak time, but rather during
system down time. Then the scheduled defragmentation may
be performed without the necessity of an extensive /O
search process and without impacting system performance.
Furthermore, the candidacy list 118 (FIG. 1) may useful in
determining how many data areas 112 (FIG. 1) may need to
be defragmented. The candidacy list 118 (FIG. 1) may also
aide in estimating the amount of time that may be needed to
defragment the data areas and in deciding the best time to
schedule the defragmentation.

If at 204, it is determined (based on the analysis previ-
ously described) that the data area is not a candidate for
defragmentation, then the data area is not added to the
candidacy list 118 (FIG. 1). The examination of the candi-
dacy list 118 (FIG. 1) is explained in more detail below with
respect to FIG. 3.

Referring now to FIG. 3, an operational flowchart illus-
trating the steps carried out by a defragmentation manager is
depicted. As previously explained with respect to FIG. 2, the
method may be implemented by providing a candidacy list
118 (FIG. 1) that may be stored with a reference to the data
areas 112 (FIG. 1) that may benefit from defragmentation at
a later time. As such, no search would have to be done prior
to the defragmentation process to determine which data
areas require defragmentation. Conversely, the list may be
accessed by a defragmentation manager 116 (FIG. 1) at the
time of defragmentation and the defragmentation threshold
value 122 (FIG. 1) of those data areas 112 (FIG. 1) on the
list may be re-examined. If the data area has exceeded the
defragment threshold based on the defragment threshold
value then the data areas 112 (FIG. 1) may be defragmented
without the necessity of an intensive 1/O search process.

At 302, an item on the candidacy list 118 (FIG. 1) may be
processed by the defragmentation manager 116 (FIG. 1). For

US 9,436,696 B2

9

example, defragmentation may be scheduled every night
during an off-peak time and before the actual defragmenta-
tion occurs, the candidacy list 118 (FIG. 1) may be processed
by the defragmentation manager 116 (FIG. 1). The defrag-
mentation manager 116 (FIG. 1) may process each item on
the candidacy list 118 (FIG. 1) and at 304, the defragmen-
tation threshold value 122 (FIG. 1) is re-assessed and it is
determined whether the data area has exceeded the defrag-
ment threshold based on the defragment threshold value.
According to one implementation, defragmentation thresh-
old value 122 (FIG. 1) may manually be changed to result
in either more or less defragmentation candidates.

If at 304, it is determined that the data area 112 (FIG. 1)
has exceeded the defragment threshold based on the defrag-
ment threshold value then the data area 112 (FIG. 1) remains
on the candidacy list 118 (FIG. 1) and is defragmented at 306
and then removed from the candidacy list 18 (FIG. 1) at 308.

If at 304, it is determined that the data area 112 (FIG. 1)
has not exceeded the defragment threshold based on the
defragment threshold value (FIG. 1) then the data read 112
(FIG. 1) is not defragmented and the data area 112 (FIG. 1)
is removed from the candidacy list 118 (FIG. 1) at 308.

FIG. 4 is a block diagram of internal and external com-
ponents of computers depicted in FIG. 1 in accordance with
an illustrative embodiment of the present invention. It
should be appreciated that FIG. 4 provides only an illustra-
tion of one implementation and does not imply any limita-
tions with regard to the environments in which different
embodiments may be implemented. Many modifications to
the depicted environments may be made based on design
and implementation requirements.

Data processing system 800, 900 is representative of any
electronic device capable of executing machine-readable
program instructions. Data processing system 800, 900 may
be representative of a smart phone, a computer system,
PDA, or other electronic devices. Examples of computing
systems, environments, and/or configurations that may rep-
resented by data processing system 800, 900 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, network PCs, minicomputer systems, and distributed
cloud computing environments that include any of the above
systems or devices.

User client computer 102 (FIG. 1), and network server
computer 114 (FIG. 1) include respective sets of internal
components 800 a, » and external components 900 a, b
illustrated in FIG. 3. Each of the sets of internal components
800 4, b includes one or more processors 820, one or more
computer-readable RAMs 822 and one or more computer-
readable ROMs 824 on one or more buses 826, and one or
more operating systems 828 and one or more computer-
readable tangible storage devices 830. The one or more
operating systems 828 and software program 108 (FIG. 1) in
client computer 102 are stored on one or more of the
respective computer-readable tangible storage devices 830
for execution by one or more of the respective processors
820 via one or more of the respective RAMs 822 (which
typically include cache memory). In the embodiment illus-
trated in FIG. 4, each of the computer-readable tangible
storage devices 830 is a magnetic disk storage device of an
internal hard drive. Alternatively, each of the computer-
readable tangible storage devices 830 is a semiconductor
storage device such as ROM 824, EPROM, flash memory or
any other computer-readable tangible storage device that can
store a computer program and digital information.

10

15

20

25

30

35

40

45

50

55

60

65

10

Each set of internal components 800 a, b also includes a
R/W drive or interface 832 to read from and write to one or
more portable computer-readable tangible storage devices
936 such as a CD-ROM, DVD, memory stick, magnetic
tape, magnetic disk, optical disk or semiconductor storage
device. A software program 108 can be stored on one or
more of the respective portable computer-readable tangible
storage devices 936, read via the respective R/W drive or
interface 832 and loaded into the respective hard drive 830.

Each set of internal components 800 a, 5 also includes
network adapters or interfaces 836 such as a TCP/IP adapter
cards, wireless wi-fi interface cards, or 3G or 4G wireless
interface cards or other wired or wireless communication
links. A software program 108 in client computer 102 can be
downloaded to client computer 102 from an external com-
puter via a network (for example, the Internet, a local area
network or other, wide area network) and respective network
adapters or interfaces 836. From the network adapters or
interfaces 836, the software program 108 in client computer
102 is loaded into the respective hard drive 830. The
network may comprise copper wires, optical fibers, wireless
transmission, routers, firewalls, switches, gateway comput-
ers and/or edge servers.

Each of the sets of external components 900 g, b can
include a computer display monitor 920, a keyboard 930,
and a computer mouse 934. External components 900 a, b
can also include touch screens, virtual keyboards, touch
pads, pointing devices, and other human interface devices.
Each of the sets of internal components 800 a, 5 also
includes device drivers 840 to interface to computer display
monitor 920, keyboard 930 and computer mouse 934. The
device drivers 840, R/W drive or interface 832 and network
adapter or interface 836 comprise hardware and software
(stored in storage device 830 and/or ROM 824).

Aspects of the present invention have been described with
respect to block diagrams and/or flowchart illustrations of
methods, apparatus (system), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer instructions. These computer instruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks.

The aforementioned programs can be written in any
combination of one or more programming languages,
including low-level, high-level, object-oriented or non
object-oriented languages, such as Java, Smalltalk, C, and
C++. The program code may execute entirely on the user’s
computer, partly on the user’s computer, as a stand-alone
software package, partly on the user’s computer and partly
on a remote computer, or entirely on a remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet service provider). Alternatively, the functions of
the aforementioned programs can be implemented in whole
or in part by computer circuits and other hardware (not
shown).

US 9,436,696 B2

11

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A processor-implemented method for implementing a
first manager and a second manager for defragmenting a
data area comprising:

receiving, by the first manager, a data change event for the

data area;

determining, by the first manager, based on the occurrence

of the data change event, whether the data area has
exceeded a defragment threshold based on a defrag-
ment threshold value, wherein the defragment thresh-
old value is a pre-determined number that has been
added to a set of pre-existing properties that define the
data area and can dynamically change based on a
defragmentation tuning that modifies the defragment
threshold value based on a frequency of a plurality of
changes associated with the data area, and wherein
determining the data area has exceeded the defragment
threshold comprises calculating a logical size of the
data area, calculating a number of physical blocks in
use, calculating the defragment threshold value, and
calculating the defragment threshold, wherein the
defragment threshold is calculated at a time associated
with the occurrence of the data change event and is
calculated by subtracting the calculated defragment
threshold value from 1 to compute a first answer and
then multiplying the computed first answer by a physi-
cal block size to compute a second answer and then
dividing the calculated logical size of the data area by
the computed second answer to obtain the calculated
defragment threshold, wherein obtaining the calculated
defragment threshold further comprises:
determining if the calculated defragment threshold is
equal to a whole number; and
in response to determining the calculated defragment
threshold is not equal to a whole number, converting
a fraction associated with the calculated defragment
threshold to a smallest integer not less than the
calculated defragment threshold;
adding the data area to a candidacy list, by the first
manager, when the data area is determined to have
exceeded the defragment threshold based on the defrag-
ment threshold value, wherein determining the data
area has exceeded the defragment threshold comprises
comparing the obtained calculated defragment thresh-
old to the calculated number of physical blocks in use;

determining, by the second manager, whether the data
area has exceeded the obtained calculated defragment
threshold based on the defragment threshold value;

defragmenting the data area, by the second manager,
when the data area is determined to have exceeded the
obtained calculated defragment threshold based on the
defragment threshold value; and

removing the data area, by the second manager, from the

candidacy list following the determination.

10

15

20

25

30

35

40

45

50

55

60

65

12

2. The method of claim 1, wherein the data change event
comprises at least one of a write to, addition to, or delete
from, the data area.

3. The method of claim 1, wherein the defragmentation
tuning comprises modification of the defragmentation
threshold value on a data area basis.

4. The method of claim 3, wherein the defragmentation
tuning comprises a collection of information including, but
not limited to, how often a data area is read, how often a data
area is written to, how often a data area is added to, how
often a data area is deleted from, how often a data area is
defragmented, and an average size of data fragments asso-
ciated with a data area.

5. A computer system for implementing a first manager
and a second manager for defragmenting a data area com-
prising:

one or more processors, one or more computer-readable

memories, one or more computer-readable tangible
storage devices, and program instructions stored on at
least one of the one or more storage devices for
execution by at least one of the one or more processors
via at least one of the one or more memories, wherein
the computer system is capable of performing a method
comprising:

receiving, by the first manager, a data change event for the

data area;

determining, by the first manager, based on the occurrence

of the data change event, whether the data area has
exceeded a defragment threshold based on a defrag-
ment threshold value, wherein the defragment thresh-
old value is a pre-determined number that has been
added to a set of pre-existing properties that define the
data area and can dynamically change based on a
defragmentation tuning that modifies the defragment
threshold value based on a frequency of a plurality of
changes associated with the data area, and wherein
determining the data area has exceeded the defragment
threshold comprises calculating a logical size of the
data area, calculating a number of physical blocks in
use, calculating the defragment threshold value, and
calculating the defragment threshold, wherein the
defragment threshold is calculated at a time associated
with the occurrence of the data change event and is
calculated by subtracting the calculated defragment
threshold value from 1 to compute a first answer and
then multiplying the computed first answer by a physi-
cal block size to compute a second answer and then
dividing the calculated logical size of the data area by
the computed second answer to obtain the calculated
defragment threshold, wherein obtaining the calculated
defragment threshold further comprises:
determining if the calculated defragment threshold is
equal to a whole number; and
in response to determining the calculated defragment
threshold is not equal to a whole number, converting
a fraction associated with the calculated defragment
threshold to a smallest integer not less than the
calculated defragment threshold;
adding the data area to a candidacy list, by the first
manager, when the data area is determined to have
exceeded the defragment threshold based on the defrag-
ment threshold value, wherein determining the data
area has exceeded the defragment threshold comprises
comparing the obtained calculated defragment thresh-
old to the calculated number of physical blocks in use;

US 9,436,696 B2

13

determining, by the second manager, whether the data
area has exceeded the obtained calculated defragment
threshold based on the defragment threshold value;

defragmenting the data area, by the second manager,
when the data area is determined to have exceeded the
obtained calculated defragment threshold based on the
defragment threshold value; and

removing the data area, by the second manager, from the

candidacy list following the determination.

6. The computer system of claim 5, wherein the data
change event comprises at least one of a write to, addition
to, or delete from, the data area.

7. The computer system of claim 5, wherein the defrag-
mentation tuning comprises modification of the defragmen-
tation threshold value on a data area basis.

8. The computer system of claim 7, wherein the defrag-
mentation tuning comprises a collection of information
including, but not limited to, how often a data area is read,
how often a data area is written to, how often a data area is
added to, how often a data area is deleted from, how often
a data area is defragmented, and an average size of data
fragments associated with a data area.

9. A computer program product for implementing a first
manager and a second manager for defragmenting a data
area comprising:

one or more non-transitory computer-readable storage

devices and program instructions stored on at least one
of the one or more non-transitory tangible storage
devices, the program instructions executable by a pro-
cessor, the program instructions comprising:

program instructions to receive, by the first manager, a

data change event for the data area;

program instructions to determine, by the first manager,

based on the occurrence of the data change event,
whether the data area has exceeded a defragment
threshold based on a defragment threshold value,
wherein the defragment threshold value is a pre-deter-
mined number that has been added to a set of pre-
existing properties that define the data area and can
dynamically change based on a defragmentation tuning
that modifies the defragment threshold value based on
a frequency of a plurality of changes associated with
the data area, and wherein determining the data area has
exceeded the defragment threshold comprises calculat-
ing a logical size of the data area, calculating a number
of physical blocks in use, calculating the defragment

10

15

20

25

30

35

40

45

14

threshold value, and calculating the defragment thresh-
old, wherein the defragment threshold is calculated at
a time associated with the occurrence of the data
change event and is calculated by subtracting the
calculated defragment threshold value from 1 to com-
pute a first answer and then multiplying the computed
first answer by a physical block size to compute a
second answer and then dividing the calculated logical
size of the data area by the computed second answer to
obtain the calculated defragment threshold, wherein
obtaining the calculated defragment threshold further
comprises:
program instructions to determine if the calculated
defragment threshold is equal to a whole number;
and
in response to determining the calculated defragment
threshold is not equal to a whole number, program
instructions to convert a fraction associated with the
calculated defragment threshold to a smallest integer
not less than the calculated defragment threshold;
program instructions to add the data area to a candidacy
list, by the first manager, when the data area is deter-
mined to have exceeded the defragment threshold
based on the defragment threshold value, wherein
determining the data area has exceeded the defragment
threshold comprises comparing the obtained calculated
defragment threshold to the calculated number of
physical blocks in use;
program instructions to determine, by the second man-
ager, whether the data area has exceeded the defrag-
ment threshold based on the obtained calculated defrag-
ment threshold value;
program instructions to defragment the data area, by the
second manager, when the data area is determined to
have exceeded the obtained calculated defragment
threshold based on the defragment threshold value; and

program instructions to remove the data area, by the
second manager, from the candidacy list following the
determination.

10. The computer program product of claim 9, wherein
the data change event comprises at least one of a write to,
addition to, or delete from, the data area.

11. The computer program product of claim 9, wherein the
defragmentation tuning comprises modification of the
defragmentation threshold value on a data area basis.

#* #* #* #* #*

